Redie Jhealk

PRELIMINARY
INSTRUCTION MANUAL

DISK BASIC VERSION 1.1
TRSDOS VERSION 2.0

JULY 71978

This Manual deseribes the firsr relesss of TREDOS. New releasss will contain additions and
new features nat implemented in this preliminary version.

maﬁmmm of the defect by
or replacement ot Radio Shack's election and sole expense, except

pendable. No representstion or other efifirmation of fmet, including but not
limited to statements regarding capacity, suitability for use, or performance of the
equipment, shall be or be deemed to be & warranty or representation by Radio
Shack, for any purpose, nor give rise to any lability or cbligation of Radio Shack

RECT, SPECIAL, CONSEQUENTIAL OR OTHER SIMILAR DAMAGES
ING OUT OF ANY BREACH OF THIS WARRANTY OR OTHERWISE.

IMPORTANT NOTICE

ALL RADIO SHACK COMPUTER PROGRAMS ARE DISTRIBUTED ON AN
“AS 1S™ BASIS WITHOUT WARRANTY

Radio Shack shall have no lisbility or responsibility to customer or any other
person or entity with respect to any linbility, loss or damage caused or alleged to
be caused directly or indirectly by computer equipment or programs sold by
Radio Shack, including but not lmited to zay inteyruption of service, loss of
business or anticipatory profits or consequential damages resulting from the use
or operation of such computer or cumputer programs,

NOTE: Good data processing procedure dictates that the user test the program,
run and test sample sets of data, and run the system in pemlilel with the
system previously in use for a period of time sdequats to insure that
results of operation of the computer or program are satisfactory.

: o - A e . e
== b = e B L N CH P i e Pagdl N S S Rt i - P et L . gy, "t
= ‘v-"l — - L “-F' - H. e L4 -

BCanvrisht 1978 by Radia Shack. A. of Tandy Carporation. Ft. Worth, Texas 76102

THINGS YOU SHOULD KNOW

TRSDOS and DISK BASIC require 10K of RAM collectively.

After an INPUTY is performed from cassette, subsequent READ statements

will automatically RESTORE data each time a READ is performed. To

fix this, simply perform the statement POKE16553,255 before the first

READ is performed. This pertains to LEVEL II only, not to DISK BASIC.

When perfroming an ITNPUT# from cassette, the maximum number of byte

which can be read is 248. This does not affect disk operations.

If the RESET burton is pressed when the expansion interface is attached

to the TRS-80, any programs in memory will be lost.

If a BASIC program is stopped during execution, and alterations are

made to the program, or EDIT mode is entered, then ALL VARIABLES will

be set to zero. The program must be RUN again from the beginning.

If an LPRINT or LLIST is performed without a TRS-B80 lineprinter being

attached, the computer will "freeze-up'". The user must press RESET

or attach a lineprinter and turn it on.

All functions in LEVEL IT BASIC always return single precision value

(6-7 digits of accuracy). All trigonmometric functions use or return

radian angles. Use of degrees angles are described in the LEVEL Il

BASIC MANUAL. |

#11 machine language programs currently available through Radio Shack

will not function properly when used with DISK BASIC.

Frequent occurrences of SYNTAX errors may be caused by one of two

subtle errors.

a) If a letter or the at-symbol (%) were typed with the SHIFT key
depressed, the letters will appear to be correct on the screen,
but are really invalid. Try retyping the line, and beware of
the SHIFT key.

b) Soemetimes a space is required in a BASIC statement. All
the following lines are incorrect

1FD < 0D=0
FIELD#1,20ASCS

The characters "OD" represent a double precision zero. 'ASC"
is a BASIC reserved word. The correct statements read (note
the space and THEN)

IFD <0 THEN D=0
PIELD#1,20AS C§

10. The format of a CLOAD? commsnd to verify from cassette ¥#2Z is
CLOAD#-2,7"filename"
11. If the pressing of a key frequently caunses multiple letters to
be typed, the plastic key should be removed and the contacts beneath
cleaned. Replace the plastic key when finished.
12. TRS-80 owner may phone Radio Shack Computer Services for answers to
questions.
(817) 390-3583
or letters may be written to:
ATTN: HUGH MATTHIAS
Radio Shack Computer Services

P.0. Box 185
Fort Worth, TX 76102

13. When an INPUT from keyboard is executad, the line below the current
cursor position is erased.

14. The following table summarizes the effect of opening a file (see p. 21):

mode if file exists if non-existent le

o OK FILE NOT FOUND error message

"o" file will be file will be crezted
over-yritten

"R" oK file will be created

15. Disk file-space acguisition and release (SAVE and KILL) may
not always work when the diskette is within 5K of being full.
Use of the last 5K of free space on each diskette should be
avoided in release 2.0 of TRSDOS.

LEVEL II DISK BASIC and TRSDOS
GENERAL INTRODUCTION

With the addition of your TRS-80 Disk Operating System (called
TRSDOS), you now have three distinct yet related modes on your micro
computer.
1) LEVEL II BASIC
This is the same LEVEL II BASIC as described in the LEVEL Il
BASIC Reference Manual and is still available to you.

2} DISK BASIC
With the information on the TRSDOS system floppy disk, your
normal LEVEL II BASIC is extended into DISK BASIC, which can
read/write data files and load/save programs to disk.

3) TRSDOS

The Disk Operating System oversees cperation of your disk drives,
and provides powerful utilities such as copying one diskette to

another, or listing all programs stored on a diskette.

The use of mini-disks will greatly expand the versatility of the
TRS-80. Disks provide a fast and efficient method of accessing programs
that would ntherwiiﬁ-be stored on tape. They also provide a convenient
method of storing data.

Data is accessed by DISK BASIC by either RANDOM or SEQUENTIAL
methods. Sequential access methods are very similar to LEVEL II BASIC
statements for storing data onto tape. RANDOM access may take a little
longer to master but, the versatility and control it allows will make

its use well worth the extra time devoted to learning it.

POWER UP AND OPERATING MODES

The Disk Operating System and DISK BASIC are stored on the System
Diskette. This diskette is labelled TRSDOS and MUST always be in drive
0 (the drive closest to the expansion interface). Not all of DISK BASIC
or TRSDOS are needed in RAM memory at the same time, therefore, the parts
that are needed are copied to RAM when they are called for. This is why
the TRSDOS diskette must be in drive zero at all times.

Turn on the power to the expansion interface and the disk drives.
Gently insert the TRSDOS diskette into drive 0. Now press the power
button on the back of your TRS-80 keyboard. The Disk Operating System
will automatically load to RAM from drive 0. When this sequence is

complete, the computer will respond:

TRSDOS-DISK OPERATING SYSTEM-VER 2.0
DOS READY

This is the command level of the Disk Operating System (DOS). Under
this level, you are actually in a "system™ mode and can perform the
functions described in section 3 of this manual. Pressing the RESET
button at anytime will return you teo this point.

To use LEVEL II BASIC (without DISK BASIC extension), simply type:

BASIC2 and (ENTER)
The computer will respond with:
MEMORY STZE?

LEVEL I1 BASIC will now operate as described in the LEVEL II BASIC
Reference Manual. Pressing RESET will return you to TRSDOS, and be
sure to save any program before doing so or they will be lost. However,
you will probably want to use RADIO SHACK DISK BASIC. The command

BASIC, when typed in after the DOS READY command will load DISK BASIC

into memory.

At this time you must specify the maximum number of files that will
be open (in use) at the same time. DISK BASIC asks:

HOW MANY FILES?

Respond with the maximum number of files you wish to use. You may not
use any more than 15 files at onmce. Each file you ask for sets aside a
256 byte buffer (more on buffers in sequential/random file usage). 5o
a8 request of 4 files will reserve about 1K of memory. You can specify
a default value of 3 files by pressing (ENTER).

The next question is:

MEMORY SIZE?

Respond with the highest address (in decimal only) availiable to DISK
BASIC or press ENTER and DISK BASIC takes 2ll memory it can find.

I1f at any time you wish to return to the Disk Operating System
from DISK BASIC, type:

CMD"S"

The computer will respond with DOS READY. If you are in DISK BASIC, be
sure to save any programs on tape or disk, BEFORE you return to TRSDOS

oT your program will be lost.

DISK _DRIVES
The TRS-80 allows up to 4 mini-disk drives. The drives are numbered

0 to 3. Drive 0 is located on the cable closest to the expansion
interface. If other disk drives are used, they are numbered sequentially
(up to 3) as they occur on the cable. Disks will be referred to by

their drive numbers in this manual.

DISKETTE CARE AND HANDLING

Diskettes are simply sheets of magnetic recording material
specially prepared for use in the computer system. Diskette are
particularly wvulnerable to abuse and great care should be exercised
when handling them. When not in the drive itself, the disk should
be placed in its protective sheath. The user should avoid touching
the recording surface exposed by the oval window in the paper cover.
As in all recording material, the diskettes should be protected from
dust, high temperatures and magnetic fields.

You may physically prevent a disk from being written on by "write
protecting' it. This done by placing a small piece of tape (write
tab) over the square notch on the mini-floppy. This will prevent any
future recording on the mini-disk until the tape is removed from the
notch.

Only one side of the TRS-B0 mini-disk is used to record infermation.
When placed in the drive, the square notch should be on the upper edge
and the label opposite the red indicator light.

PHYSICAL DISKEITE FORMAT
TRSDOS mini-disks are formatted with 35 concentric circles where

data is recorded. Each circle is called a "track". Each track is

evenly divided inte 10 sections called "sectors". Each sector contains

room for recording 256 bytes of information. So each track contains
2560 bytes and each mini-disk contains 89600 bytes. TRSDOS can copy
information from/to memory at a rate of 12.5K bytes per second. Not
all 89K of the mini-disk are for your use. TRSDOS keeps a directory
on each diskette so that the sectors related to a program or data file
are known. This leaves the user about 85K of free space. The TRSDOS
system diskette has 55K of free space on it.

6

MEMORY S1ZE

TRSDOS 4.2K RAM
DISK BASIC 5.8K RAM
files A 256 byte buffer must be reserved for each

file, and some extras overhead space for a total

of about 280 bytes per file.

DISK BASIC

Radio Shack Disk Basic adds several non disk related statements
to the interpreter. The additional LEVEL Il statements and functions

provided by the mini disk are:

MIDS (left side of equation)
INSTR

TIMES

USR (USRO-USR9)

DEFUSR

Hexadecimal and Octal Constants
LINE INPUT

DEF FN

capto”

cMprT

CMD'"R"

MID§

MID§ can be used on the left side of an equation to replace a
substring in an indicated string. The general format is similar to
the format used for MID§ on the right of an equal (or relztional)
sign.

MIDS (string #1, I,J) = string #2

This will replace a porticn of the "string™ beginning at position I
for J characters with the string indicated by "string #2", J is
eptional value. If J is not expressed, the string will replace the
portion of "string #1" begimning at I for the entire length of string

#2 or to the end of string #1 whichever is smaller. This limitation

precludes any changes to the length of string #1.

Gxample:

10 INPUT "STRING 1 -- STRING #2 -- START -- LENGTH";BS, LS, 5,K
20 MID$(BS,S,K) = LS

I0 PRINT BS
40 GOTO 10
RUN

String 1 -- String #2 -- Start -- Lemgth? ABCD, XY, 2,2
AXYD

String 1 -- String #2 -- Start -- Length? 1901 DAXAR ST. W., RD, 12,:
1901 DAKAR RD. W.

String 1 -~ String #I -- Start -- Length? GO BRONCOS GO, COWBOYS, 4,
GO COWBOYS GO

INSTR - This is a string function which searches for the occurrence of
one string within another string. INSTR will return the starting position
of the occurrence. (This function replaces the INSTRing subroutine given
in the LEVEL II manual.) The general format of INSTR is:

INSTR (I, string #1, string #2)

This will search for the first occurrence of string f2 in string 71
and if & match is found, the value returned will equal the starting
position of the match,.

I is an optional parameter which specifies the position in string #1
where the search is to begin. If I is greater then the length of string
#1, or strimg #1 is null, or no match is found; INSTR returns a 0. If
string #2 i% null, INSTR returns I (if specified) or 1.

TIMES - This is a 17 character string containing the date and time.
The date and time are initialized by the DATE and TIME utilities of
the DISK QPERATING SYSTEM. (qo- DOS UTILITIES chapter) The format of
TIMES is "MM/DD/YY HH:MM:SS8". To print the time on the line printer type:
LPRINT RIGHTS (TIMES,8)
To print the date in the center of the screen type :
PRINT 8540, LEFTS(TIMES,8)

NOTE: When the real time cleck is stopped for tape loading (see CMD"T")
TIMES will not be updated by DOS. CMD"R" restarts the cleck.

DEF FN - User defined functions
DEF FN designates a variable as a function
DEF FN variable name (variable list) = expression

The variable name will be the name of the function. The name can

consist of any number of characters, however, the first character must

10

'hu alphabetic and only the first two characters will be recognized
(as in variables). The "variable list" consists of the variables that
are to be used in the function. These may be any number of legal
variables, separated by a comma, depending on the number of arguments
needed by the expression. The expression is the function itself.
These may ‘only be one logical line or statement in length. (Statements
separated by colons are not allowed.)
For exanmple:

10 DEF FNMLT(X,Y)=X*Y

20 INPUT A,B

30 C=FNMLT(A,B)

40 PRINT C
The function MLT multiplies two arguments. Line 30 takes the values of
A and B, passes them to the user defined function in line 10 which
multiplies them, and stores the result in C.

Strings may also be manipulated by functions. For example:

10 DEF FNADDS (A$,B$) = A§+" '"+B§

20 INPUT"ENTER FIRST NAME";X§

30 INPUT"ENTER LAST NAME";Y$

40 Z$=FNADDS (X$,Y$)

S0 PRINT 1§
In this example a dollar sign (§) was added to the function name indicating
a string function. This is necessary because, just like variables,
functions must indicate which variable type is to be returned - single(![)
or double precision (#),integer (%), or string (§). The default is
single precision.

The usefulness of the DEF FN statement becomes apparent when a
particular function is used several times in a program. This will save

time and memory space when performing repetitive operations.

11

HEXADECIMAL and OCTAL CONSTANTS - In some functions it is more convenient

to use HEX (base 16) or OCTAL (base B8) constants rather than decimal
numbers. These number bases are specified by the following symbol(s):
Octal - £ (octal constant)
HEX - &H (hexadecimal constant)
For example:
POLE +&H42B9, &HFF
would POKE the hexadecimal constant FF (255 decimal) at location 42E9
HEX (17129 decimal). Hex and Octal constants may not be used in response
to INPUT statements or in DATA statements.

USR - The USR function has been expanded to allow up to 10 machine
language user routines. The routines can be assembled using the TRS-BO
Editor/Assembler program and loaded under the SYSTEM command or the
object code can be loaded from the keyboard using the POKE statement.
DEFUSR has been provided to assign the starting-addresses for the routines
rather than POKEing the address in a user location as described in the
LEVEL I] manual.

The gemneral format for calling a USR routine from a BASIC program
is:

USRa(arg)
n is an integer value from 0 to 9 and represents the routines assigned
with the DEFUSR statement (see DEFUSR). This number will call one of
the ten possible user routines. For example,

X=USR3(0)
will call user program #3. If a value is to be returned directly by
the routine, X will contain the value produced. '

As in mormal Level II operatioms, user routines in Disk Basic are

protected using the MEMORY SIZE option given at power up.

12

DEFUSR - Is provided to assign entry points to USR routines. This
statement rveplaces the user location - POKE - method described in
the Level II manual. The general format of the function is:
DEFUSRn = addr
n may be any number from 0 to 9 representing the 10 possible USR
routines. Addr is an integer value indicating the starting address of
the USR routine. 7. For example:
DEFUSR? =~ &nTome
would assign USR7 a starting address of 70E9 HEX.
For example: This program will print the numbers from 1 to 100 and
then call a machine language subroutine (line 100) to "White out" the
screen. The machine langusge routine is POKEd into memory from the
data statements
10 DEFUSRI = ZHT7DOO
20 FORX=32000 TO 32013
30 READ A
40 POKE X,A
50 NEXT X
60 CLS
70 FOR X=1 TO 100
80 PRINT X;
90 NEXT X
100 X=USR1(0)
110 FOR X=1 TO 1000
120 NEXT X
130 GOTO 60
140 DATA 33,0,60,54,255,17,1,60,1,255,03,237,176,201

13

PASSING ARGUMENTS TO AND FROM USR ROUTINES - There are 2 ways to
communicate from BASIC to machine language subroutines.
1. POKE' the arguments into fixed locations in RAM and, after
the subroutine does its work, PEEK the results back into BASIC.
2. Pass the argument as part of the USR function while using

routines in BASIC to do the number conversions.

This example will give subroutine the value stored in X and return a

value in Y.

BASIC

IE_EEFUSRS- H7D00O Define entry point to user subroutine

20 INPUT X Number 5 as 7D00 (hex)

30 Y = USRS(X) At this point control is passed to the
subroutine

SUBROUTINE

this is a routine in ROM which will take
the value of X (the argument in line 30)

main body of convert it to an integer and store it in HL
subroutine :
JP OASAH this is o rovrine in ROM which will take

the value in HL and pass it to the calling
Basic program as the new value of USR. 1In
the above example Y = value of HL

CMD"T" -~ Time Out - This command must be used, either in the command

mode or within a program, before any tape operations. CMD"T" turns
off the REAL TIME CLOCK so timing sensitive tape commands will not be
interrupted. Commands affected on CLOAD, CSAVE, INPUT#=1(-2),SYSTEM

(filename)

CMD"R" - Restatrt Clock - Use this command to restart the clock after

tape operations.

Example:

10 CMD™T" turns off clock
20 INPUT#-1, A,B,C

30 CMD"R"™ turns on clock

14

CMD"D" - This command loads the DOS debugger. See the DOS UTILITIES

section, DEBUG command.

CLOAD?T - This wverify routine is not available under DISK BASIC for
comparing programs CSAVEd under LEVEL IT. A "BAD" message will always
result. Programs CSAVEd under DISK BASIC will verify correctly.

Line Input - Causes all charascters typed in to be assigned to a string
variable. This is used when commas, quote marks or other delimiter may
be input, &8s in names, addresses, etc.

Line Input "prompt string'; single variable
eg. 10 LINE INPUT "ENTER YOUR NAME";N§

would cause all characters typed in up to an (ENTER) teo be assigned to
N§ even though the name may contain a comma. A question mark is not

printed unless it Is part of the prompt string.

CLOAD may not be used with a file name under Disk Basic. For example
CLOAD"A'" may cause the computer to hang up. To load from tape, use

the following sequence:

CMDT™ turn off clock
CLOAD
cCMD'"R"™ restart clock

CSAVE still requires a file name

15

RADIO SHACK LEVEL IT DISK COMMANDS

The commands used with the disk system facilitate the control
of disk operations. They initiate and terminate disk operations and
specify the types of files to be used. They also control files in

much ths same way Level Il Basic commands control programs.

LEVEL Il Disk commands are:
OPEN

CLOSE

SAVE

LOAD

MERGE

KTLL

CMpns™

RUN"filename"

16

FILE NAMES

Throughout this manusl references are made to filenames. These
names can always consist of up to 4 descriptors, the name itself, a
file extension, a password, and a drive number; in that order. All
but the name itself are uptinnal.

The name can be from 1 to 8 alpha-numeric characters with the first
character being a letter. Example:

MASTERIN
PAYEMP25
DOLLAR

4
XYZ123

The file extension can be from 1 te 3 alpha-numeric characters
and is used to identify a file type. File extensions must be preceded
by a slash (/). If it is not specified, the operating system uses

blanks for the file extension.

Example:
/CMD could indicate a command file
/OBJ could indicate an object file
/SYS system file
JDAT data file
/BAS basic program file

1f a file extension is non-blank, it must be specified for all disk
operations involving that file.

The file extension is listed beside the file name by the "DIR"
directory command.

The password is a file protection feature. It can be from 1 to B

alpha-numeric characters. If a password is assigned when a file is

17

created by an OPEN statement then that password must slways be provided
for 'subsequent disk operations. Without the proper password a file
may not be read, copied, opened, or deleted. BE CAREFULI!!! If you
forget the password, you will never be able to use that file again.
All passwords are preceded by a ?ﬂ'ind. Examples:
. CRIMSON
«SKY
- XMASTREE
The drive number is a digit from 0 to 3 preceded by a colon. It refers
to a particular disk drive (drive 0 is the disk closest to the expansion
interface, drive 3 the furthest). Unless a drive number is specified
for new files, that file will be written on the lowest numbered drive
in the system with available space and not write protected. If no
drive is specified for input files, the operating system will search
each drive for the requested file, the only loss is access speed.
Examples:
.1 drive 3, the last on the cable
:2 drive 2, the second to last ome
These are examples of file names using various combinations of descriprors.
MATHTEST/BAS.TEACHER: 2
the file name is MATHTEST and is a BASIC program file
the password is TEACHER and is located on drive 2
INVT:1
the file name is INVT and it is on drive 1, no extension
is given and no password is required
PAYROLL/DAT.IRS
the file name is PAYROLL and it is a DATA file, the password
is IRS and you don't know which drive it is on. The drives
are searched in numerical order until one is found which has

18

space and is not write protected. That drive will be used.
You may have two files with the same name as long as some part
of the file name (extension, or drive number) distinguishes it. For
example, all the following files are uniquely different.

FILE:l FILE/BAS:1
FILE/BAS:0 FILE/SYS
FILE: 0 FILE/QBJ

The password will not make a filename unique. If a program is
saved a FILE/BAS and then another attempt is made at saving the same
program as FILE/BAS.PASS an FILE ACCESS DENIED error will occur. The
password does not uniquely differentiate a file. A password only places
a protection on a2 file when it is saved.

19

MINI DISK COMMANDS

The OPEN command must be used before any disk reads or writes
for data files; this data does not apply to program saves and loads.
The format for using the OPEN command is as follows:

OPEN "mode", #filenumber, "filename'

The mode specifies the type of file. The following modes are used:

MODE DESCRIPTION

0 Output mode for sequential files - write to disk
I Input mode for sequential files - read from disk
R Input and/or Output for Random files

Files numbers are used to identify a file that is opened. In later
Input/Qutput operations, this number is used to identify thttfile and
options rather than the name, mode, disk #, etc. Filenumbers are integers
and range from 1 to 16. This means that 16 files may be opened at one
time and used in different operations by using the file mmber given in
the OPEN statement.

Filenumber correspond to the mumber of files requested with HOW
MANY FILES? 1If you requested 6 files then your filemumber may only
be the numbers 1 through 6. Likewise, the default of 3 files only
allows you the filenumbers 1, 2, or 3. The # sign above is optional in
the OPEN statement. No two OPENed files may have the same file number,
but filenumbers may be changed by CLOSEing the file and reopening with
a different file number.

The filemame is an szlphanumeric string which was used to identify
the file when it was stored on the disk (or to name a file that you
will be creating).

Example of OPEN statements:

20

OPEN "O",1, "OUTPUT"
OPEN "I",2,"INPUT"
OPEN"R",3,"FILE:1"
OPEN D§, X, N§

In the fourth example. variables are used to form the OPEN statement.

It is standard to insert OPEN into programs by giving it a line
number. A file should only be opened with one mode at a time. Attempts
to opet & file with a filenumber already in use will cause a FILE
ALREADY OPEN error.

CLOSE - CLOSE will terminate access to a specified file by closing out
INPUT/QUTPUT to the file. The format is:

CLOSE filenumber,...,filenumber

Examples: CLOSE 1, 2, 6

Closes file indicated by 1, 2, and 6
The file numbers are optional. If CLOSE is used without filenumbers,
all open files will be closed.

A CLOSE issued to a sequential output file will write the final
buffer and CLOSE the file.

A NEW command will automatically close all open files as well
as deleting the program and variables resident in the computer. All
files must be closed before changing diskettes on a particular drive.

KILL - KILL deletes a disk file. This will release the space used by
the old file for a new one.
KILL"filename"
Example: KILL"DATAFILE"
A file must be CLOSEd before you attempt to KILL it. A file that is OPEN
(see OPEN) cannot be deleted (a "FILE ALREADY OPEN" error will occur if

21

this is attempted).

MERGE - The MERGE command combines a resident program with one located
on disk. The incoming program overlays the resident program and replaces
any lines having the same line number. This edits the resident program
by replacing lines with the program c&m&n: in from the disk., The

general format is:
MERGE"filename

Example:

MERGE"ADDPROG"
The file muuit have been saved using the "A" (ASCIT Format) option described
under SAVE.

SAVE - Programs may be saved on disk using the SAVE command. This
operation is performed using the following statement:

SAVE"filenamer
Example:

SAVE"PRGRM10"

This will store the program and delete any programs of the same name.
Therefore, if you edit or update a program, the current program will
replace the old one.

Programs are normally stored using a compressed format. This is
done automatically by the computer. Programs can be-stored using an
ASCII format by specifying the "A" option. This is used when program
text is to be read in by another program (either MERGE or LINE INPUT).
An example of such a program might be a routine to renumber lines in
another program. To specify the ASCII option, use the following
format.

SAVE"filename",A

22

Example:

SAVE"'PRGRM20,A
Programs saved in ASCI] will transfer more slowly than files stored
in the normal binary format.

LOAD - This command loads a program stored on a disk into memory. The
LOAD command uses the following form:

LOAD"filename” ,R(optionzl)
Example:

LOAD""PRGRM30", R
This loads the program specified from the disk drive specified and
executes the "R™ gption.

‘The "R" option specifies the program is to be loaded and RUN.
When & LOAD is issued without an R option all files are sutomatically
closed and all resident memory is deleted (like NEW). 1If the R option
is used all data files are kept ompen and only program lines and
verisbles are deleted from memory.

RUN™FILENAME"

The command performs the same function &s the LOAD command with
an R option specified. The following commend are equivalent:

LOAD"PROGRAM", R

RUN"PROGRAM"

CMD"$"™ - This command will return control to the disk operating system.
¥When this command is used in BASIC the computer will respond:
DOS READY

23

SEQUENTIAL DISK DATA FILES

Sequential input and output is the simplest form of disk data
storage. The statements are very similar to one used for tape storage.
The statements used in sequential I/0 operation are:

PRINTS# LINE INPUTH#

PRINT USING

INPUT? EOF

PRINT? - Is used to write data to a sequential output file. The format
is very similar to the statement used in the PRINT statement for creating
cassette tape files.

PRINT? file number, variable or exp.;...; variable or exp.
This will write the data specified in the variable/expression list to
the file indicated by the file number. The file number is the one
specified in the OPEN statement for that file.

Example: PRINT#1,A;A$;Z;AS;LEFTS(I5,5)
This will write the specified information to the file indicated by
filenumber 1. ASCII characters can be inserted using the CHR§ statement
and ASCII codes. This method is used when a string contains characters
or control characters other than alphanumerics such as commas, linefeeds,
etc.

eg/ PRINTF1, CHRS(34);X§;CHR$(34)....
If the string is alphanumeric only -- commas can be inserted

PRINT#1, AS;",":B§;:",";.

PRINT USING - Allows you to write to a sequential file using a specified

format. The formats are indicated by the format specifiers used in the
BASIC PRINT USING statement. The format is:
PRINT# filenumber,USING " format";Variable/expression list

24

Example: PRINTHI,USING"**§@ef. #0;121.129

will print *§121.13 to the disk file.

INPUTY - Used to read back sequential data written by the PRINT#
instrvction.

INPUT# filenumber, variable, variable

This will read data from the disk into the specific wvariables. The
file number is specified at OPEN time.
Example:

INPUTE3,A,B,C

This will read data from the disk assigning A to the first value read,

B to the nmext etc.

There are some important differences between disk and tape files.
When PRINTing strings, it is necessary to separate them with explicit
commas &s below in line 30.

10 OPEN"0O",1,"NAMES"

20 AS="JOHN":B§="SMITH

30 PRINT#1,A$;",";B§

40 CLDSE:UFEH";".I,"H&HES“

S0 INPUT#1,AS:PRINTAS

60 CLOSE:END

When this program is run it will print JOHN. 1If line 30 were
PRINT#1,A$;B$ then this program would print JOHNSMITH. The commas are
needed between strings so Disk Basic will know where a string ends and
begin. If you forget the commas you could easily get a READ PAST END
FILE error. Note the commas aTe not needed betweéen numeric values.

PRINT#1,A;DC;B is a valid statement.

25

Another difference is that PRINT# statements need not correspond
exactly to the INPUT? statements. With tape operations, a PRINT#-1,A,B,C
requires an INPUT#-1,A,B,C to read the three values. This is not so
with disk. Observe the following program:

10 OPEN"0O",1,"DATA™

20 A=1:B=2:C=3:D=4

30 PRINT#1,A,B,C,D:CLOSE

40 OPEN"I",1,"DATA"

S0 INPUT#1,A,B,:PRINTA,R,

60 INPUT#1,A,B:PRINTA,B:CLOSE

> RUN
1 2 3 4

NOTE that the PRINT om lime 30 does not match the two INPUTs on lines 50
and 60. Yet the program warks correctly.

In order to simulate a RESTORE command for a disk file it is necessary
to CLOSE the file and then reOPEN it again. This sets all reading
(INPUT#) back to the beginning of the file.

LINE INPUT - Will input any string from disk or the keyboard, ignoring

commas or gquotes until a carriage-return or 255 characters are rTead.

From the terminal, Input will be requested without a question mark being
typed. You may type quotes ("), commas (,), or linefeeds (J) until
an ENTER is typed.

10 CLEAR 300

20 LINEINPUT AS$

30 PRINT AS

Try the above program with linefeeds and commas. Neote that a BREAK
will stop the program during a LINE INPUT.

The following program will read itself off of disk and list itself
on the monitor screen.
10 CLEAR 500
20 OPEN"I",1,"PROG"
30 FORI=1TOS
40 LINEINPUT#1,AS$
50 PRINT AS:NEXT
7 SAVE"PROG™,A
> RUN

Be sure to SAVE the program as an ASCII file before running it. The
formats for LINE INPUT are:

LINE INPUT string variable (keyboard)
and LINE INPUT#filenumber, string variable

EQOF - Denotes the end of a file. When inputing data from a disk file,
this will detect the end of the data file. The EOF works as a logical
function to test for the last record of the file. It can be used in two
WaYSs :
Variable = EOF(file number)
eg/ X=EOF(1)
assigns X a -1 if no more data, 0 if more data in file. It can be also
used with an IF statement.
IF EOF(1) GOTO 889
If end of file then branch to 999, if not continue on the next line.
Example:
10 OPEN"I",1,"FILE1"
20 FOR X=1 TO 20
30 IF EOQOF(1)THEN 60
40 INPUT #1,A(X)
NEXT

60 PRINTX;"RECORDS READ"
70 CLOSE

27

Files are automatically allocated 14K I1f more space is used, another 1k
K is allocated etc. Therefore, the minimum space allocated for a
file 1s 1280 bytes and files always acquire memorylkK at a

time instead of smaller units (bytes at a time).

28

RANDOM FILES

Random files offer two distinct advantages over sequential files.
Sequential accesses require record by record data search, where Random
accesses provide immediate retrievel of desired data, Sequential data
is stored ASCII format while Random data is stored in a compressed
binary format. Sequential files may only be opened in an input or output
mode, while .o Random file may be written to or read from at will. Data
can essily he read, modified, and written back to disk, changing old
information.

A 256 byte record is the primary element in a random file. A file
can contain as many as 329 of these records. A record number between
1 and <329 is associated with each record. This serves as the record
jdentifier and all attempts to read or write records include this idenmti-
fier. Of course, the first record in the file has a record number of 1,
the sacond of 2, and so on. If you wish to sccess any record in a file,
all that is needed is its record number for immediate access to that data.

Random records are read and created in a BUFFER. A buffer is a 256
byte area of memory where records are built one variable at 2 time. The
buffer is then written onto disk. The reverse is true for reading
random records. The buffer is filled from disk then variables are pulled
from the buffer one at a time.

This bresking up of the buffer into variables and pulling out data
is called "fielding'". An example will clarify this. Suppose a file
is to contain a mailing list of names and addresses. Record one contains
the following:

ATKINSON MIKE 1000 JACKRABBIT SCOTTSDALE AZ
if this information were read from disk into the buffer, how do we
know where the name starts, and the address begins? The answer is that

you MUST know and MUST inform the computer. Using a FIELD statement
29

the computer is informed of the format of the data.
OPEN"R"™,2,"MAIL"
FIELD#2,20AS N§, 25 A5 ADS, 15 AS CT$, 2 AS STS

This FIELD statement specifies the format for file #2 as having the
first 20 characters referred to AS N§(name), the next 25 characters
referred to AS AD$(address), the next 15 characters referred to A5 CT$
(the city) and the next 2 characters AS ST§{state). In general the
FIELD statement specifies the leagth of each item within a record and
which string variable they are assigned. Be careful with string variables
used in a FIELD statement. As you will see, they must be treated
differently than usual string variables.

If the lengths of each item are added together the total length of
the data is 20+25+15+2=62 characters. But if the buffer is 256 characters
long, what are the other 194 characters deoing? They are wasted! Each
time a name and address are PUT onto disk 194 bytes are unused. Thus
three- fourths of the files are wasted. Later a method will be shown to store
four addresses in the buffer at once. This would waste only 8 characters
out of the 256 byte buffer.

The following is a picture of the buffer and a FIELD statement

and how they interact.

FIELD#2,20 AS N§, 25 AS ADS, 15 AS CT§, 2 AS ST$

—
¢ iy I] .

20 bytes 25 bytes 15 bytes 2 bytes 194 unused brtu;-\

Buffer for file #2 (256 bytes total)

30

All variables in the buffer are stered as strings. There are
special commands in DISK BASIC to convert integers, single precision,
and double precision numbers to strimgs and back to numbers again.

Integers in the range of -32768 to +32767 are stored as two byte
binary numbers. Therefore, when converted to a string, these will be
stored as two byte strings in the rendem data file.

Single precision numbers are stored as 4-byte binary numbers.
They are converted to 4 byte string: when stored on the disk.

Double precision numbers require 8 bytes and therefore require
8-byte strings to store them.

This will become important when you zre dividing the buffer into
fields. Integer values will be fielded 2 bytes, single precision 4
bytes and double precision will be assigned 8§ bytes for storage.

31

CREATING RANDOM FILES ON DISK

Files are created by placing the appropriate data in the buffer and
then storing the contents of the buffer on the disk as a record. Since
each record is assigned a number, any record can be accessed individually
by referring to its record number.

The first step is to OPEN the file under the R(Random access) option.

OPEN "R", filenuwber, "filename"

As in sequential access, the filemumber is used to refer to a particular
datn file. This will also assign a buffer to the file for use in accessing

the disk file from your program.

FIELD - The next step is to divide the random buffer into segments, which
will hold the perticular elements of data. Each FIELD statement refers to
a "type'" of record. If all the records on a disk will look alike, only one
FIELD statement will have to be used for all the records. The best way to
determine the fields for a buffer is to write down a representative record
and determine the maximum length for each element. Suppose we wished to
store information in & file which contained a NAME, ADDRESS, PHONE NUMBER,
ID NUMBER and a DOLLAR AMOUNT. A representative record might look like

this:
MAXTIMUM TYPES
DATA NUMBER OF BYTES NUMBER OF BYTES OF DATA
JOHN DOE 8 20 string
8999 W. 8TH AVE 15 20 string
999-9999 8 8 string
1056 2 2 integer
132.84 4 4 single precision

Since most names are longer than 8 characters, the field should be long

enough to contain most long names (20 characters is standard). The

general format for the field statement is:
FIELD# filenumber, field size AS buffer string variable,...,
field size AS buffer string variable
A pound sign (#) is optional before the filenumber.

The FIELD statement for the example would be:
FIELD 1, 20 AS NAM$, 20 AS ADRS, 8 AS PH§, 2 AS NI§, 4 AS NS§

More than one type of FIELDed dats can be used in the same data file.
This is done by refielding the buffer by executing another FIELD statement.
1f several different fields are used in the same file or program, it is
convenient to put the field statements in subroutines and execute them
when & particular type of data is being sent. This will be shown shortly.
Don't let the FIELD statement trick you! The buffer is 256 bytes
long but remember that BASIC only allows a string te be 255 bytes. Thus
the following is illegal
FIELD 1, 256 AS Q§
or
FIELD 2, 128 AS Q§, 128 AS R§

Note that no individual field may exceed 255 bytes and that the sum of

‘the lengths of all elements may not exceed 255.

Moving Data to the Buffer - After the buffer has been FIELDed, you then
place the appropriate data in the fields. Severzl statements facilitate

and contrel this transfer.

STRINGS - LSET and RSET -- Strings are placed into the buffer using two
statements, depending on whether you want the string right or left justified.
A left justified string is one that starts from the left and fills the

field to the right. If the string is longer than the field, the rightmost

33

position of the string will be lost. If the string is smaller than
the allotted field, it is "padded" with blanks on the right. A right
justified string is just the opposite., The field is filled from right
to left and padded with blanks on the left if smaller and cut off on the
left if larger. These assignments are made using LSET and RSET.

LSET buffer string variable = string expression

RSET buffer string variable = string expression
For example, in the Field statement, NAM§ was fielded to 20 bytes. The
fleld could bé ggsipgmed o string uvring either LSET or RSET im the following
manner.

A$=""DOE":BS="JOHN"

LSET NAM§ = A§+", "+BS§
The buffer field would look like this (¥ represents & blank):

DOE, BJOHNERY BB BEEBBEBIE

RSET NAMS$ =A§ +", "+B§
would result in: BEPEFEPPEEYEEEBDOE, ¥ JOHN

NUMERIC VALUES - MKIS$, MKS$ and MKDS -- Since numbers are stored in a

RANDOM file as strings, 3 statements are provided to make the conversions

and send them to their respective fields in the buffer.

MKI§ - This function converts an integer to a two byte string and sends
it to its assigned field in the random buffer. The general format is:

MKI$ (integer or integer variable)

For axampiu, assume the variable NI$ has been fielded for a two byte
integer string: to convert the integer to a two byte string and place
it in the field we could write:

A = 9999

LSET NIS = MKIS(AS)

34

This would convert the contents of the integer variable A§ to a
two byte string and field it in NIS. The integer value must be in the
range of ~32768 to +32767. Either LSET or RSET must ALWAYS be used
when moving anything to the buffer.

MKSS - This function converts single precision values to a 4 byte string.
and places it in the indicated field in the buffer. The general form
of the statement is:
MESS (single precision variable or value)
If the 4 byte FIELD was defined by NS§ the statement might look like this:
Al =:0995.99
RSET ‘NS§ = MESS(Al)

This would convert the single precision number indicated by Al to a 4

byte string and place it in the field specified by NS§.

MEDS - This function converts a double precision value to an 8 byte string
and places it in a specified field. The format is:
MXD§ (double precision veriable or value)
Example: if the B byte field was indicated by ND$
Af=3_141592625D0
LSET ND§ = MED{AF¥)
would convert the double precision value indicated to an B byte string

and place it in the buffer field indicated by ND§.

PUT - The statements we have described so far, set up the buffer and
place information in it. When the buffer contains the information you
wish to store as tecord on the disk, a single statement is executed to
transfer the contents of the buffer to the disk file. The PUT statement
assigns the data in the buffer a record number and stores it im the

specified file. The format is:

35

PUT filenumber, record-number
The filenumber indicates the file which was opened to contain the data
and the record number is the number assigned to one of 329 records. The
record number is optional. If the record number is not specified, the
data in the buffer will be initially written to record 1 and thereafter
the records will be written into the next record number in increments of
one when each PUT is executed.
Example:

PUT 1
When a record is PUT, the disk space for all record numbers from 1 up
to the record number use is reserved. Thus a PUT 1, 350 will cause
a DISK FULL error even though only one record of mesningful data was

written. This is because space for records 1 through 349 was set aside.

LOF - This function will return a value indicating the last record number
in a given file. It is especially useful when adding records to a file
that was previously constructed. The general format of the LOC statement
is:

LOF (filenumber)
Example:

PRINT LOF(1)
will return a value for the last record in file 1. This prevents reading

past the end of the file and reading meaningless characters inte the buffer.

36

RETRIEVING DATA FROM A RANDOM FILE

Getting data back from a random data file is very similar to the
methods used for storing it. However, the process is reversed.

FIELD - This statement is used to prepare the buffer for data coming
in from the data file. (The format for the FIELD statement is identical
for the field used for storing the data)

FIELD? filenumber, field size AS buffer string wariable,...,

field size AS buffer string variable

The same field statement can be used to retrieve the data from disk
as the one used to store it there (or one identical to.4it) if the data
is to be read in the same manner it was written. However you may read
dats in a different format than the one useéd to store it.

For example, if the first 40 chsracters of a record were written as
3 separate strings, they could be read back as one string:

FIELD 1, 40 AS THES,...etc
In some operations, only one piece of data from a record may be required.
If the required information is at the beginning of the record, it is
rather simple to field only the required mumber of characters as one
variable and the remainder as another, dummy variable.

However, if the fcquired information is located in the middle of
the record, several methods can be used to futﬁh the data. One method
is to assign the unneeded data preceeding the data to a dummy variable.
in o field statement then field the information you want and field the
remaining data into another variable. If you had a field which looked
like:

NS 55§ ID¢ PHS
A NAME A _SO0CTIAL SECURITY NUMBER 1.D. NUMBER PHONE #

37

and you needed only the I[.D. NUMBER(ID§) you could do this by fielding
N§ and SS§ as one string, then fielding ID§, then PH§. 1ID§ would then
be fielded as a separate number and could be read individually.

Suppose N§(name) and S5S$(social security number) total to 25 characters.
In order to get to the ID number in the S5th record, the following program
can be used:

10 CLEAR 500:REM NEED EXTRA STRING SPACE

20 OPEN™RY™,Z,"DATA"

30 FIELD 2,25 AS DUMMYS, 6 AS IDS

40 GET 2,5

50 PRINT IDS
This will print out the 6 character ID number from the S5th record. The
first 25 characters are assigned to DUMMY$ 2nd not used, But this moves
through the buffer so that characters 26 through 31 can be used.

Ancother method would be to use the FIELD statement used when storing

the data and then inputing only the string containing the data you need
and ignore the rest.

GET - This statement is used to copy a record from the disk into the
fielded random buffer. The format is:
CET filenumber, record?.
Example:
GET 1, 100 or GET X, R
This will copy the record from the appropriate file to the file buffer.
The record number is optional. If no record numbers are used, the
first record accessed with a GET will be record 1. The next record will

be 2 and so forth sequentially until the end of the file.

PUT/GET DIAGRAM

Buffer for file #2

N o

W
‘+’ PUT 2,4
—-

—

Disk File

Record

1

Record

Record

GET 1,4

38

Record

Record

Record

o

Record

* o = P‘-J,

RETRIEVING DATA FROM THE BUFFER

STRINGS - Strings can be read from the buffer simply by referencing the
variable of the appropriate field. For example:

I'f the string AA§ was fielded into the buffer from the disk data
file using:

FLELD 1, 10 AS AAS
the string could bBe fetched from the buffer by using:

BS = AAS
This would assign the contents of the buffer field AA$ to the string
variable B§. Since the original string was stored as either a right
justified (RSET) or left justified (LSET) string, B§ and AAS§ will also
have the same configuration.

NUMERIC VALUES - Since numeric values are stroed as 2, 4 or 8 byte strings
(using MKT§, MXS§, MKD$); they must be reconverted to numbers when they
are fetched from the buffer. Again, there are three statements which

will handle tha 3 types of mumbers: integers, single precision and

double precision.

CVI - This statement will convert two byte strings representing integers
into a base 10 integer value and remove it from the buffer. The general
format is:

CVI(2 byte string)
Example:

A% = CVI(NIS)
This will convert the string represented in the field by NI$ to its
integer equivalent and store it under the integer variable ASl.

An attempt to convert a string smaller than 2 bytes will result in
a FC error. 1f the string is more than two bytes long, the extra bytes

will be ignored resulting in a unpredictable value in some cases.

CVS -~ This function will convert a 4 byte string into its equivalent
single precision value and retrieve it from the buffer. The format is
as follows:

CVS5(4 byte string)
Example:

Al = CVS(NS$)
This will convert the 4 byte string represented in the buffer by NS§ to
a single precision muber #nd store it under the single precision variable
Al.

If the string is less than 4 bytes an FC error will occur. If the
string #s greater ‘than 4 'bytes, the extra bytes (to the right) will be

ignored ‘which may return an incerrect value.

CVD - This function converts an 8 byte string inte a double precision
value and retrieves it from the buffer., The format is:
CVD(B byte !t;in:}
Example:
A® = CVD(NDS)
This example will convert the 8 byte string represented in the buffer by
ND§ into its dnublalpre:isinn value and store it under the double precision

variable AP,

41

SUB-RECORD USE

Now what does one do about wasted disk space? Referring back to

the mailing list problem there were 194 bytes unused. Since only 62

bytes are needed, there is room for four(4) records within the buffer,.

Four(4) times sixty-two(62) gives 248 characters. Thus only 8 bytes are

unused per record.

Each physical record (a buffer full of data) contains 4 sub-records

numbered 0 through 3. At the beginning of physical record 1, the lst
address is found. At the beginning of the second physical record is
the 5th address. The 5th address is termed =8 being the 5th "logical

record”. Given the logical record number (ie, which piece of data), the

physical record and sub-record numbers can be calculated.

are

LR = the logicsl record number
physical record = INT((LR-1)/4)+1
sub-record = LR-4%((LR-1)/4)-1

In order to FIELD this, it appears that four separate FIELD statements
needed. These would be:

FIELD 1, 0®67 AS D§, 20 AS N§, 25 AS AD§, 15 AS CTS, 2 AS ST$

FIELD 1, 1%62 AS D2, 20 AS N§, 25 AS AD$, 15 AS CT$, 2 AS STS

FIELD 1, 2%62 AS D§, 20 AS N§, 25 AS ADS, 15 AS CT§, 2 A5 STS

FIELD 1, 3%63 AS DS, 20 AS N§, 25 AS AD§, 15 AS CTS, 2 AS STS§

These represent the FIELD statements for the subrecords 0 through 3

respectively. Note the use of the dummy variable D%, which is assigned

the

1eading information that is not wanted.

Observing the pattern to these FIELD statements, a generalized FIELD

can be written if the sub-record number (SR) is known.

FIELD 1, SR*62 AS D§, 20 AS N§, 25 AS AD§, 15 AS CT§, 2 AS ST$

42

A full working program for manipulating the mailing list file MAIL
is listed below. -

;

4680 -CLS:CLOSE

INT: INPUT"TYPE 4 TO WRITE. 2 TO READ ": N
R, 4, "MARIL"

0N N GOTD 2@e, Zbe

INT : INPUT"ENTER LOGICAL RECORD NUMBER": LR
LR=0 THEN 108

GOSUE 503 :PR=INTC(LR-4)/4)+1

GET 41, PR:PRINT"PHYSICAL RECORD # ="; PR:PRINT
PRINT*HAME™"; TRBC28); INPUTAS .LSET Ni=HRs
PRINT“ADDRESS"; TREC20),) : INPFUTAS :LSET ADS=AS
ERINT*CITY"; TRAB(28Y) : INPUTAS LEET CT#=AS
PRINT*STRTE"; TAB(28); : INPUTAS (LSET STi=FR¥
PUT 4, PR:COTD 286

PRINT : INPUT"ENTER LOGICAL RECORD NUMBER": LR
IF LR=0 THEN 108

GOSUSSES PR=INT(LR=-13/43+1

GET 1, PR-PRINT"PHYSICAL RECORD ¢ =";PR:PRINT
PRINT*NAME™: TRB(28); N§

PRINT*ADDRESS"; TRBC2Q); ADS

PRINT"CITY™; TABC(28),;CTS

PRINT“STRTE": TAB<29); ST$:G0TO 386

REM SUBROUTINE TO FIELD PROPER SUB~RECORD
REM HITHIN THE PHYSICHL 256 BYTE RECORD
SRl P=ds INT((LR=4)/43=1

PRINT*SUB-RECORD # =";5R

FIELD 1.SR*62 AS D$. 20 AS N$, 25 AS ADS: 4S5 AS CT$.2 AS ST

33

43z

BEgaB IR U U LERYRUEAREBRRES

:
:

43

Note that the FIELD statement has been placed in a subroutine

(lines 500-530). Given the logical record number (LR), the program

calculates which physical record (PR) the logical recerd is found in.

This record is read into the buffer (GET 1, PR). Next the entire buffer

is FIELDed so that N§, AD§, CT§, and ST$ refer to the desired sub-record

(SR).

This program will allew creation, retrieval, or modification of any

logical record. When the program is RUN, the user is ssked if READ or

WRITE is desired. The logical record number is then asked for and the

data is displayed for READ. For WRITE the input of nasme, address, city,

and state are requested, and the new dsta is written onte disk. Type

a logical record number of zero to get back to the read or write question.

At this point pressing BREAK will stop the program. Note that the program

can change a sub-record with in a physical record without harming any of

the data in the other sub-records.

Typical RUN follows:

SRUN
TYPE 1 70 WRITE, 2 TO FERD? 1

ENTER LOGICAL RECORD NUMBER? 1
SUE-RECORD & = @

PHYSICAL RECORD & = 1

NAME 7 JOHN DOE
ADDRESS 7?7 111 ANYSTREET
CITY ? ANYTOWMN

STATE 7 TH

ENTER LOGICAL RECORD NUMBER? 6
SUB-RECORD @ = 1

PHYSICAL, RECORD # = 2

NAME 7 JOHN SMITH
ADDRESS ? 1811 DISK DRIVE
ciTY ? SOMEWHERE

STATE ? CA

a4

ENTER LOGICAL RECORED NUMBER? 8

ENTER 1 TD WRITE. 2 TO RERD 7 2

ENTER LOGICAL RECORD NUMBER? 6
SUB-RECORD & = 1

HNAME JOHN SMITH
ADDRESS 16844 DISK DRIVE
ciTy SOMEWHERE

STATE CA

ENTER LOGICAL RECORD NUMBER? ©

TYPE 4 TO WRITE. 2 TO RERD ? (BRERK)
EREAK AT 140

RERDY

}

DISK ERRORS
Disk BASIC expands LEVEL II's 2 letter error messages into full

words. An M O ERROR becomes a MISSING OPERAND ERROR, etc. There is
an additienal set of messages which indicate errors relating to disk

operations. These errors could potentially destroy data files if
perpetuated, so error ' trapping is not supported with disk errors. All
other errors may be trapped by "ON ERROR GOTO"™ just as in LEVEL II.

45

ERROR MESSAGES

CODE
50

51

54

57

58

59

61

62

63

65

66

67

ERROR MESSAGE
FIELD OVERFLOW

INTERNAL OVERFLOW

BAD FILE NUMBER

FILE NOT FOUND

BAD FILE MODDE

DISK I/0 ERROR

FILE ALREADY EXISTS

SET TO NON-DISK STRING
DISK FULL

INPUT PAST END

BAD RECORD NUMBER

BAD FILENAME

MODE MISMATCH

DIRECT STATEMENT IN FILE

TOO MANY FILES

EXPLANATION

More than 255 bytes were allocated to
a Random FIELD

An error hes occured in the disk
gpcrating system itself or a disk 1/0
ault

A filemumber specified has not been
defined or defined under a different
option

An attempt to access a file which does
not exist

An attempt to perform a sequential
operation or a random file or vise-
versa

An error occured in data transfer
between the system and disk

An attempt to rename a file (with
RENAME) when new name has been used
for another file

LSET or RSET used for a string variable
vhen not fielded.

All available space has been utilized
on a particular disk

An attempt to read more data from a
sequential file than exists

Record number assigned to a Random
record out of range (1-340)

An attempt to assign an illegal
filenanme

A Random file was opened under
sequential mode or vise-versa

A direct statement was read when
loading a program stored in ASCII

An attempt was made to create more
than 48 files on a disk

TRSDOS OPERATING SYSTEM UTILITIES

The operating system is in control when the message DOS READY is
displayed on the screen. This mode is initiasted automatically on power
up and when CMD"S" is executed under Disk Basic. TRSDOS contains several
utility programs which are available anytime DOS READY is displayed. None
of these service routines are svaileble from DISK BASIC, and no utilities
work after CMD"T" has been executed.

Files are referenced with the notation filenamel, filenamel.
A file name may be followed by the extension, drive number, and passwerd

if necessary (described in the File Names section of the manual).

AUTO filenamel

Load any CMD file or any utility on power-up, (it will not load BASIC
programs because at POWER UP, BASIC itself has not been loaded yet).

This is an extremely valuable utility for dedicated applications of the
TRS-80. Typing AUTO and the name of a program such as BASIC will cause
BASIC to be loaded automatically everytime the TRS-80 is turned on., Only

one parameter is allowed.

NOTE: 1I1f AUTO is told to load a flakey program, the computer will "hang-
up" while trying to load the bad program, and appear to stop. In tﬂis
case use the MANUAL OVERRIDE. Hold down the ENTER key while the TRS-80
is turned on, this will supress the action of the AUTO command. Then
type AUTO and press ENTER. AUTO followed by no command will return the

TRS-80 to the normal power-up sequence.

47

BACKUP
Backup copies one diskette to z blank diskette. The source drive will
be requested. Reply with a number from 0 to 3 (Drive 0 is the closest
drive to the expansion interface). The destination drive will also be
requested. The destination drive must contain the blank diskette -
formatted or unformatted, BACKUP will automatically format it. If the
disk contains any data, BACKUP will be cancelled. To reuse a diskette
either pass a magnet over it or preferably erase it with a Bbulk tape
eraser, such as Radio Shack, Cat. #44-210, The creation date must then
be supplied in the form MM/DD/YY. BACKUP will format (if necessary),
verify, and copy. ;

When complete, BASKUP re-boots the DOS. If there is only one disk
on your system, reply 0 (zero) to Both SOURCE DRIVE and DESTINATION DRIVE
requests. The system will perform a one disk backup which may require

swapping diskettes back and forth several times.

copPY
COPY filenamel to filename2 creates a duplicate of filemamel under the
name and descriptors specified by filename2. Example:

COPY JOURNALS:1.XYZ TO HISTORY:3
A file named JOURNAL3 on ATi?n 1 with password XYZ is duplicated onto
drive 3 under the name of HISTORY. Copy BASIC programs by LOADing from

one diskette and SAVEing te another.

DOS DEBUGGER

The debugger can be invoked under the operating system by typing DEBUG.

The debugger will be executed when 1) the BREAK key is pressed 2) a program

is loaded. Under BASIC, type CMD"D" and the debugger will execute immediately,
type G and press ENTER to return to BASIC. OCMD"D" will not work when the

REAL TIME CLOCK has been turned off (CMD™T"™Y for cassette operations.

48

The following commands control the operation of the debugger:

D nnnn Display memory at address nnunn

M onnn B xx Modify address nnnn to xx; space bar
increments address

R rr ¥ nnnn Load register pair with nnnn

X Normal display mode (registers and memory)
alsp terminates any incomplete entry

S Full screen display mode (memory only)

A Display all memory in ASCII

H Display all memory HEX

; Increment memory display 1 block

- Decrement memory display 1 bleck

G nnnn (,bbbb,cccc) Go to memory address nnnn, cptional
breakpoints bbbb and ccce. If nnan is not

specified, execution resumes at last
breskpoint

I Step one instruction at a time

C Single call step is like I except CALLS
gaTe executed in full

u Continuously update the display stop by
holding down X or pressing BREAK key

G(ENTER) Returns to BASIC if entered by CMD"D"
DIR¥: (DRIVE NUMBER) - displays all file names (with extentions) located

on the specified drive number.
Example:

DIRK:1 returns the names of all files on Drive 1

FORMAT - Formats a new or magnetically erased diskette to the TRSDOS
standard of 35 tracks, 10 sectors at 256 bytes. Previously used diskettes
must be erased with a magnet or preferably a high quality bulk type

eraser such as the Radio Shack Cat. #44-210. All tracks are verified;

unusable sectors are marked unavailable to the system. A drive number is

requested by FORMAT, reply with a number between 0 and 3. Drive 0 is the

49

disk closest to the expansion interface. It requests the diskette
name, rveply with any name up to 8 letters. This name will be printed
when directories are printed (DIR). Next input the date in the form
:]HJHHTTT. Finally input the master password. The password can be
any word up to 8 characters. It will be used in later versions of
DOS to recover files whose passwords have beean forgottem. The next
inquiry provides for TRACK LOCKOUT. If you don't wish to lock out
any tracks, reply N. If the diskette is damaged in a known section,
you can use the good part and lockout the bad by replying Y. WHICH
TRACKS?, reply wlth individual track numbers separated by commas or a
range of track numbers separated by a dash (-). FORMAT THE LOCKED
OUT TRACKS? reply Y or N, and format begimns.

CLOCK
displays the time on the video monitor

It can only be removed by power off or reset in CMD"T" Disk Basic

TIME¥hh imm:'ss sets the time of duy
DATE¥mm/dd/yy sets the date
TRACE . prints the Program Counter on the video

display. It can only be removed by power
off or reset.

DOS ERROR MESSAGES
- there 15 & flaw in the diskette. The track is locked cut and

cannot be used by the system. Affects disk capacity but not disk performance.
FILE ACCESS DENIED - The file exist but the correct password wasn't

provided.
EILE NOT FOUND - the file does not exist or the name is incomplete.
Remember - file extemsions (/BAS/SYS etc) must be given if the file was

created with an extension.

